两个质数的乘积是合数,因为两个质数相乘的积有四个因数,即除了1和这个合数外,这两个质数都是这个合数的因数,合数就是在大于1的整数中,除了1和这个数本身,还能被其它正整数整除的数。
质数(又称素数),指在大于1的自然数中,除了1和该数自身外,无法被其他自然数整除的数(也可定义为只有1与该数本身两个正因数的数)。
1、质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。
2、质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数。质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,N+1是素数或者不是素数。
1、不是的。任意两个质数相加,和都是偶数。这句话是错的。
2、比如2+5=7,2+7=9,2+11=13,2+13=15,2+17=19,2+19=21
3、这句话如果改成这样就是正确的“2除外,任意两个质数相加,和都是偶数。”
4、因为所有的质数,只有2是偶数,其它的都是奇数,两个奇数相加,和一定是偶数。
1、两个质数的和是13这两个质数分别是11和2。
2、质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。
3、性质:质数的个数是无穷的。如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
既是质数又是偶数的数为2,也是唯一的一个数字。偶数是能够被2所整除的整数。正偶数也称双数。若某数是2的倍数,它就是偶数,可表示为2n;若非,它就是奇数,可表示为2n+1(n为整数),即奇数除以二的余数是一。
整数(integer)是正整数、零、负整数的集合。整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。如果不加特殊说明,所涉及的数都是整数,所采用的字母也表示整数。
关键词: 两个 质数 乘积 什么